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Abstract Our study proposes a new local model to accurately control an avatar using six inertial sensors in

real-time. Creating such a system to assist interactive control of a full-body avatar is challenging because control

signals from our performance interfaces are usually inadequate to completely determine the whole body move-

ment of human actors. We use a pre-captured motion database to construct a group of local regression models,

which are used along with the control signals to synthesize whole body human movement. By synthesizing a

variety of human movements based on actors’ control in real-time, this study verifies the effectiveness of the

proposed system. Compared with the previous models, our proposed model can synthesize more accurate results.

Our system is suitable for common use because it is much cheaper than commercial motion capture systems.
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1 Introduction

The ability to synthesize human action precisely in real-time can give a user/trainee the chance to control

a virtual avatar using his/her own body movements, navigate the virtual world, or accomplish a virtual

task. Such a system could also be used in real sports training, rehabilitation, and real-time control of

game characters or robotic systems such as tele-operation. The challenge has already been partially

solved by commercial motion capture (mocap) equipment, however, it is quite expensive for common use.

Because the systems generally require the performer to wear skin-tight clothing along with no less than 40

retro-reflective markers, 18 magnetic or inertial sensors, or a full-body exoskeleton, they are cumbersome

for actors.

Recently, major game console companies, including Microsoft, Sony, and Nintendo, have developed

next generation hardware devices to capture the online performance of individual players. These control

interfaces are suitable as performance interfaces because of their low cost and unobtrusiveness. However,

control signals from these devices are often noisy and low-dimensional, and therefore cannot be used to

control human movement accurately.
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Figure 1 The actor wearing six sensors to accurately control a virtual character.

This study presents a new approach to performance animation that uses six inertial sensors to create

a system to control an entire avatar accurately (see Figure 1). Our system employs inertial sensors

because they are low-cost, compact, and highly accurate. However, constructing a performance animation

interface is challenging because control signals from the equipment are fairly low-dimensional, and often

inadequate for determining the full-body movement of actors. (Usually, more than fifty degrees of freedom

(DOF) are used in representing a virtual human character.)

Our approach is to teach an online dynamic model using a pre-captured motion database and employ it

to constrain the synthesized pose to look natural. The proposed model predicts the current pose qt using

its previous m poses qt−1, . . . , qt−m using a group of mathematical functions. Generally, it is difficult to

predict how people move because human action is highly nonlinear. Instead of teaching a global dynamic

motion model, which is often not appropriate for modeling the nonlinear properties of complex human

movements, this study proposes to construct online local regression models.

While running, we use the K-nearest neighbor search method to find the K closest sequences that

are similar to the recently synthesized poses from the pre-captured database. These examples along

with their subsequent poses are employed as training data to obtain a prediction function that finds the

relationship between the previous m poses and the current pose. At each moment, our system produces

a new local model for the next pose. The proposed model is effective for human motion because it takes

the heterogeneity of a pre-captured database into full consideration. Using the constrained maximum a

posteriori (MAP) inference approach, the problem of online motion reconstruction is formulated using a

priori information from online local models together with a likelihood term imposed by the control signals.

2 Related work

• Performance animation interfaces. Commercial mocap equipment is one of the most popular

technologies used to control a virtual character. The mocap system is based on passive/active optical,

exoskeleton, and magnetic sensors, all of which are capable of carrying out real-time capture of an actor’s

movements. However, the systems are quite expensive when used by large numbers of actors. In addition,

they are very complex, cumbersome and tedious, because they require the performer to wear skin-tight

clothing along with more than 40 retro-reflective markers which must be carefully positioned, 18 magnetic

or inertial sensors, or an exoskeleton.

Synthesizing total character motion using only a few sensors has already been well explored. To control

a standing avatar in real-time, Badler [1] proposed the inverse kinematics (IK) method together with four

magnetic sensors. To reduce the kinematic redundancy, a heuristic method was used in their approach.

In contrast, our study adopts a data-driven approach. Compared to Badler’s solution, Semwal [2] used

eight magnetic sensors and added an analytic method to the IK technique. Using a foot pressure sensor,

Yin [3] created a system that searches and duplicates motion from a prerecorded database. However, the
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method can barely reconstruct whole human movements for a narrow range of motions, and foot pressure

sensors cannot provide enough information to synthesize an upper body action accurately. Using five

cheap inertial sensors, Slyper’s method [4] can control and synthesize upper-body movement. Different

from their work, we could control whole body human actions using just six sensors. In addition, we

created a group of time-varying local models to constrain and synthesize real-time human motion rather

than search for the closest example and implement it. Recently, Ha [5] created a system, which used

one foot pressure sensor and Sony PlayStation Move to reconstruct upper-body motion, which was sim-

ilar to Slyper’s method. However, our method can achieve not just upper-body but full-body control.

Tautges [6] used accelerometers as signal providing equipment, and his method exceeded space limita-

tions, but accelerometers cannot provide positional information, so the reconstructed results were not

natural enough. Compared with our method in this study, their method cannot achieve accurate motion

control. Liu [7] reached full-body human motion control using six inertial sensors, however, we used a

more powerful model to enable dimensionality reduction and achieve better results. More recently, some

researchers developed an accurate human motion control method using depth information provided by a

depth camera [8,9], whereas, our interactive human motion control system is based on six inertial sensors.

Unlike vision sensors, inertial sensors do not suffer from occlusion problems. In this study, we focus on

marker-based approaches.

• Data-driven animation. A number of data-driven approaches were developed. Typically, we use

three extremely different approaches: interpolating [10–12], motion graph [13–18] and a statistical mod-

eling constraint approach [7, 19–25]. Because the first two approaches cannot achieve real-time require-

ments, we constructed a statistical dynamic model to predict the current pose using previous synthesized

poses. To date, statistical motion models have been widely applied to synthesize realistic human mo-

tion. They can be used for inverse kinematics [20], interactively control human action using several

retro-reflective markers [19], perturbations of natural-looking human motion [21], using manipulation

interfaces to edit human motion [23], using the Gaussian process latent variable model (GPLVM) to

synthesize human motion [25], performance animation using a global model [22], real-time motion control

using a local principle component regression (PCR) model [7], building physically-valid motion models

for human motion synthesis [24], and others.

Among the above-mentioned statistical models, ours is extremely similar to local models constructed

in the subspace for online control of human motions [7,19], because all of them were built during runtime

and based on training data which were close to the current example. Nevertheless, there is a very

important difference. For regression learning approaches, the training data can be divided into two parts:

input and output data. The principle component analysis (PCA) model used in [19] only focuses on the

dimensionality reduction of the input data, and the PCR model used in [7] focuses on the dimensionality

reduction of both the input and output data. However, these two models fail to recognize the projection

relationship between the input and output training data. The model we propose in this study estimates an

input-output projection with a linear combination of basis regression equations or functions, therefore,

it can add more spatial-temporal relationships consistently in a pre-captured database than previous

models. Our test in Section 7 shows that the proposed model can synthesize more natural-looking human

actions than previous local pose models. In addition, the online local dynamic models make it easier to

find suitable structures for high-dimensional global models.

3 Overview of performance interface

Our performance interface automatically transforms control inputs from six inertial sensors into realistic

human actions by building sequential local models during runtime and then using them to interpret the

performer’s action (see Figure 2). Our performance interface includes the following components.

• Calibration of the local coordinates for sensors and skeletal sizing. A calibration step is

implemented for two reasons: one is that different actors have different skeletal size; the other is that for

the same user, the way he/she wears the sensors may vary, so our system needs to map the coordinates of

each sensor to the control coordinates of the user’s body. Thus, a new calibration approach is introduced,
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Figure 2 System overview. An actor wearing six inertial sensors performs the desired motions using the InterSense IS-900

system. The motion performance step automatically reconstructs the 3D orientation and position of each sensor for every

time step in real-time. While running, the performance interface automatically transforms control signals into high quality

human motion using a motion database.

Figure 3 Sensors for our avatar control system.

which is robust to both different users and various sensor placements. Our performance interface requires

the user to wear six inertial sensors on his/her head, center of torso, both hands and both ankles for

performance-driven animation, as shown in Figure 3. By guiding the user to complete eight “calibration”

poses, the calibration step can estimate the user’s skeletal size and each sensor’s local coordinates at the

same time.

• Online modeling of human dynamic behavior. A novel statistical local model is presented for

our online motion synthesis. Our performance interface uses sequential local linear models which are

constructed from a pre-captured database to model various human actions on the fly. One advantage of

modeling is that our proposed models have the ability to predict the movements of actors in local regions

of the configuration space.

• Online motion reconstruction. While running, the actor performs the desired motion using six

inertial sensors. The global 3D orientations and 3D positions of all sensors are recorded simultaneously

using our performance interfaces, [c1,. . . ,ct]. This information is useful because it describes the trajecto-

ries of special points and vectors on the body of the avatar. By combining the current control signals ct
provided by the sensors and the constructed local probabilistic model based on previous m reconstructed
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poses Q̃ = [q̃t−1,. . . ,q̃t−m], our system can synthesize the user’s pose qt in a constrained MAP framework:

max
qt

Pr
(
qt|ct, Q̃

)
∝ max

qt

Pr(ct|qt) · Pr
(
qt|Q̃

)
. (1)

By applying the negative log to the posteriori distribution function Pr(qt|ct, Q̃), we can convert the

constrained MAP problem into an energy minimization problem:

min
qt

− lnPr(ct|qt)︸ ︷︷ ︸
Econtrol

+− lnPr
(
qt|Q̃

)
︸ ︷︷ ︸

Eprior

, (2)

where Econtrol is the likelihood term that measures the extent to which the synthesized pose qt matches

the current signals ct, and Eprior is the prior term that describes the prior distribution of human motion.

Conceptually, the prior term tests the naturalness of the reconstructed pose.

The calibration step is completed offline, however, the motion modeling and reconstruction process are

executed online. In the following sections, we give a detailed description of these three components.

4 Calibration of local coordinates for skeletal size and sensors

An InterSense IS-900 system was used to record 3D orientation/position data of all inertial sensors

(40 fps) in real-time from our performance interfaces. The IS-900 processes motion signals from a tracking

device to compute 3-DOF orientation and position data, where the orientation data is integrated from

magnetometers, gyroscopes, and accelerometers, and the position data is provided by ultrasonic sensors.

The calibration step proposed above ensures that the performance interfaces are adequate for various

sensor placements and for actors with different skeletal lengthes. Furthermore, the skeletal size calibration

step aims to calculate the size of the actor’s skeleton and the sensors’ local coordinates calibration step

computes each inertial sensor’s local coordinates.

Eight “calibration” poses are used for calibration. The interface guides the user to perform the same

pose as the green pose (target pose) which is shown on the screen, and the performance interface records

the global orientation and location of inertial measurement sensors under these calibration poses (see

the accompanying video). To reduce the ambiguity in the process of modeling a human skeleton, a low-

dimensional eigen model is built based on data from a human skeleton. All skeletal data in our experiments

are from the Carnegie Mellon University (CMU) motion capture database1) and are represented in the

format of the Acclaim Skeleton File.

The skeletal size is represented by a vector s which records each bone’s length. The vectors oj and

pj which are related to the sensor’s local coordinate systems, are used to represent the orientations and

positions of the j th inertial measurement sensor. The vectors qi, i = 1, . . . , 8 are used to represent the

calibration poses. Hence, we can now solve the nonlinear optimization problem for our calibration step:

arg min
{oj},{pj},{λh},s

∑
i

∑
j

∥∥∥f(s,oj ; qi)− dj
i

∥∥∥
2

+
∥∥∥f(s,pj ; qi)− lji

∥∥∥
2

+ α

∥∥∥∥∥s− e0 −
H∑

h=1

λheh

∥∥∥∥∥
2

. (3)

In the above formula, given the orientations oj and positions pj of the j th sensors, and the actor’s

skeletal size, s, the forward kinematics (FK) function f calculates the calibration poses’ joint angles qi,

The vectors dj
i and lji are the recorded global directions and locations of the j th inertial sensor for the

ith calibration pose. The scalar α weighs the importance of the skeletal model priors learned from the

prerecorded data. The vector e0 is the mean value of skeletal model, and eh, h = 1, . . . , H are the eigen

vectors. To calculate oj , pj , and s, we run an optimization calculation using the Levenberg-Marquardt

algorithm [14].

1) http://mocap.cs.cmu.edu.
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Figure 4 The key concept of our online local modeling. The points on the top line are recently reconstructed poses, and

the other lines are the K motion examples from the motion capture database that are close to the recently reconstructed

poses. We establish the relationships for these K motion examples and their subsequent poses to predict the next pose on

the top line.

5 Online modeling of human dynamic behavior

The motion control problem is definitely challenging because the information from six inertial sensors

attached to a user cannot fully constrain a full-body avatar’s joint angles, because the control signals

are of low-dimensionality while the full-body joint angles are of high-dimensionality. Our approach is

to automatically build sequential online local regression models to adequately constrain the synthesized

pose within the natural-looking solution space.

We assume human action can be represented by an m-order Markov chain, so the current pose qt
can be considered to depend only on previous m poses: Pr(qt|qt−1, . . . , q1) = Pr(qt|qt−1, . . . , qt−m).

Nevertheless, modeling the dynamic behavior of human motion is difficult because human action is

nonlinear, and a global dynamic model may not be sufficient to model complex movement. To solve this

problem, sequential local regression models are constructed on the fly to predict how humans move.

To predict the current pose at frame t, the first step is to search the motion database captured

in advance, and find the motion segments closest to the recently constructed motion segment Q̃ =

[q̃t−1, . . . , q̃t−m]. The K closest motion segments [qtk−1, . . . , qtk−m], along with their subsequent poses

qtk , k = 1, . . . ,K, which are then used as training data to learn a prediction function g that maps the

previous m poses to the current pose, as shown in Figure 4.

Suppose a linear relationship exists between an input joint angle vector x = [qt−1, . . . , qt−m] and

an output joint angle vector y = qt. For simplification, the function of the proposed model which is

represented using linear regression is

y = αTx+ βy, (4)

where the input joint angle x is an m × D-dimensional vector. D represents the dimension of the DOF

for a human character and y is the joint angle value for the output. Regression coefficients α are vectors,

and βy represents a homoscedastic noise variable, which is independent of vector x. Moreover, given the

K motion examples {(xk; yk)}, k = 1, . . . ,K, which are similar to the current synthesized poses, and by

minimizing the expected error E =
∑K

k=1 ‖yk −αTxk‖2, we can obtain the coefficients α:

α = (XTX)−1XTy. (5)

The row of the matrix X includes the input joint angle vectors xk, k = 1, . . . ,K, and the K output

joint angle values are stacked in vector y.

In our implementation, first, we put input motion data X and output motion data y together, rep-

resented as A = [Xy], and principle component analysis is then applied to A. Thus, the eigenvectors

can be extracted from the covariance matrix C = ATA. Therefore, the principal subspace contains the

direction of the joint angle data distribution. When we perform dimensionality reduction, we prove that

the directions existing in the input joint angle space have highly predictive values. In our implementation,
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by mapping input motion joint angle data as close as possible to the principal subspace, this subspace

is directly used for regression operation. We can decompose the eigen vector matrix U into Ux and Uy,

UT = [UT
x , UT

y ], where Ux represents the input joint angle space and Uy represents the output joint

angle space. To obtain a mapping relationship from the input to output joint angle spaces, first, we min-

imize ‖x−Uxv‖2 with respect to the value of eigen vector v, and can then achieve v = (UT
x Ux)

−1Uxx,

and the output y = Uyv. Thus we can obtain the regression coefficients

α = Uy

(
UT

x Ux

)−1
Ux. (6)

Because the matrix U is orthogonal, it means UT
x Ux +UT

y Uy = 1, and the invertible square matrixes

E and S have the feature: (E + USUT)−1 = E−1 − E−1U(S−1 + UTE−1U)−1UTE−1, so we can

obtain a more easy-to-calculate appraoch for the coefficients α:

α = Ux

(
UT

y −UT
y

(
UyU

T
y − I

)−1
UyU

T
y

)
. (7)

Suppose there exists a Gaussian distributed noise variable βy, its standard deviation σ can be estimated

by yk − αxk, k = 1, . . . ,K. In our experiment, a predicted function for each DOF of the synthesized

pose is constructed, therefore, to predict the dth DOF of the pose, we can describe our local regression

model as

qt,d = αT
d Q̃+N(0, σd), (8)

where qt,d, σd are scalars, qt,d represents the dth DOF of the tth frame pose, and σd represents the

standard deviation for the dth prediction function. αd, Q̃ are vectors, αd are the regression coefficients

for dth DOF, and Q̃ are the reconstructed poses before current synthesized pose.

6 Online motion synthesis

In this section, we solve the problem of how to synthesize sequential poses from the control information

provided by six inertial sensors. During runtime, our performance animation system automatically com-

bines the control signals and online local regression models, and synthesizes a performer’s poses frame

by frame.

6.1 Control stability

The stability of our control system is very important. However, the control signals ct provided by inertial

sensors might change because of Gaussian noise. Suppose σ is the standard normal distribution, the

control term of sensors can be defined as

Econtrol = − lnPr(ct|qt) ∝ ‖f(qt; s̃,L)− ct‖2
2πσ2

, (9)

where qt, s̃, L, ct are vectors, qt is the synthesized pose, s̃ is the avatar’s skeletal size, L are the inertial

sensors’ local coordinates, and ct are the observation data provided by sensors. The FK function f

calculates the global coordinate values for the current pose.

There exist outliers in control signals provided by inertial sensors, especially for the positional data.

Because of the ultrasonic sensors and the occlusion problems, the positional data may be destroyed by

outliers, missing data and error accumulation. Focusing on these problems, we adopt the Lorentzian

robust estimator to filter the noise data. Thus the matching cost term can be defined as follows:

ρ(e) = log

(
1 +

e2

2σ2

)
, (10)

where e is the distance value between the predicted signals and the observation signals, and the parameter

σ is for the robust estimator.



Liu H J, et al. Sci China Inf Sci July 2014 Vol. 57 072113:8

6.2 Motion priors

We use the prior term to constrain the synthesized motion to meet the probabilistic distribution up to

similar motion data in the local region. In our animation system, the prior term is defined as follows:

Pr(qt|Q̃) ∝
D∏

d=1

exp

(
− (qt,d −αT

d Q̃)2

2πσ2
d

)
. (11)

where qt,d, d = 1, . . . , D is the dth DOF of the current pose qt. αd and σd are the regression coefficients

and standard deviation of the dth prediction model. The vector Q̃ sequentially records the m previous

synthesized poses [q̃t−1, . . . , q̃t−m].

We can obtain the following energy formulation by minimizing the negative log of Pr(qt|Q̃):

Eprior =
∑
d

(qt,d −αT
d Q̃)2

2πσ2
d

. (12)

6.3 Implementation details

We adopted gradient-based optimization using the Levenberg-Marquardt method2) for the objective

function which is defined in (2), and used the most similar motion example which already exists in

the database to initialize the optimization. Because of a good initialization, the optimization converged

quickly. The computational efficiency of our animation system mainly relies on the searching scope in

the motion databases, so we accelerated the process for the K nearest neighbor search with a similar

strategy in [19]. Our system was able to reach an average frame rate of 37 fps real-time synthesis.

7 Results and evaluation

The database we captured includes five full-body behavior movements: golf swing (2537 frames), bas-

ketball (6582), boxing (29852), walking (20866) and running (5772). All of them were recorded using a

Vicon mocap system3) which has a frame rate of 120 fps. To match the inertial sensor’s frame rate, the

original mocap data were downsampled to 40 fps.

We verified the effectiveness of our proposed approach on various movements based on a large motion

database and evaluated the reconstructed results with ground-truth data.

• Testing on performance control and evaluation. We used all the control signals provided by

six inertial sensors to control a full-body avatar in real-time (please watch the video). The video also

shows the performance comparison between our method and the IK method. Because the inertial sensor

can provide two types of data (orientation and position), we used the position data for center of torso,

head and both ankles, and used orientation data for both hands. The results show that without prior

data, we cannot achieve real-time control based only on the IK technique. In addition, we used the

leave-one-out error evaluation method to evaluate the quality of the synthesized actions. Figure 5 shows

the average synthesis errors. The errors were calculated by degrees per joint angle per frame, using

the average distance between the motion captured by the Vicon mocap system and the synthesized

motion. We considered three types of control information: 1) 3D position and 3D orientation; 2) only

3D orientation; 3) only 3D position. We found that if we used both position and orientation constraints,

the reconstruction errors were the lowest in the above three combinations of information. In addition,

compared with 3D orientation information, 3D position information was more useful and had better

compliance with the constraints in motion reconstruction.

• Calibration for skeleton and local coordinates. Our system needs to be robust for different

users and various sensor wearing styles, so we used an average skeleton size which was calculated using

different skeleton files from the CMU mocap database. It was used as the standard subject for skeleton

2) Lourakis M I A. Levmar: Levenberg-Marquardt Nonlinear Least Squares Algorithms In C/C++. 2009.
3) http://www.vicon.com.
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Figure 5 Comparisons with inverse kinematics, local principle component analysis and local principle component regres-

sion algorithms. (a) Motion synthesis using only orientation signals provided by all the inertial sensors; (b) motion synthesis

using only position signals provided by all the inertial sensors; (c) motion synthesis using both orientation and position

signals provided by all the inertial sensors. The bars from left to right are mean error from IK, local PCA, local PCR and

our method.
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Figure 6 Study of the comparison between calibration and no calibration by the user. Score 9 means most realistic, and

score 0 means least realistic.

Table 1 Skeleton size comparison for calibration

Skeleton size Femur Tibia Back Neck Head Clavicle Humerus Radius Wrist

Standard Subject 7.23 7.54 7.89 4.21 1.93 3.89 6.57 4.02 1.85

Calibration data 1 6.59 7.38 7.39 3.97 2.48 3.73 5.56 3.06 1.51

Ground truth 1 6.53 7.41 7.42 3.94 2.59 3.75 5.51 3.09 1.54

Calibration data 2 6.58 6.89 7.03 3.45 1.76 3.49 5.04 2.85 1.37

Ground truth 2 6.57 6.81 6.99 3.39 1.72 3.47 4.99 2.71 1.35

calibration. We tested different users, and Table 1 shows the calibration results for several skeletons

of two different users. We found that, after our calibration step, the user’s skeleton size was close to

his/her ground truth data captured by the Vicon mocap system. After the calibration process, we also

obtained local coordinates for each sensor. We asked sixteen users to provide a score (1–9) for the online

synthesized motions, without telling them whether we calibrated or not. The users were chosen from

undergraduate students with little experience of 3D animation. We tested different human movements.

Figure 6 shows the study of the comparisons of motion quality with and without calibration by the user.

We found that users usually chose the motion after calibration as the better one, and give it a high score.

The results from the user study told us that our calibration step is important and useful for the quality

of our online motion control.

• Comparisons with previous algorithms. To test its performance, we compared the IK techniques,
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Figure 7 Frame-by-frame comparison for one testing sequence. (a) Walking motion; (b) boxing motion. The lines from

top to bottom are reconstruction errors from local PCA, local PCR and our method.

Table 2 Comparison of the average reconstruction errors for different methods and different databases

65609 poses 1.1 M poses

IK 4.76 4.76

LPCA 1.97 1.42

LPCR 1.75 1.19

Our method 1.43 0.87

local PCA models in [19] and local PCR models in [7] with the proposed model in our study. Figure 5

shows the standard deviations and mean errors of the reconstruction errors for various movements (golf

swing, basketball, boxing, walking and running). Figure 7 shows the frame-by-frame comparison of

reconstruction errors for single test data between the local PCAmodel, local PCR model and our proposed

model. The assessment results indicated the synthesis results using our proposed method were better

than the results created by the other two methods.

• Different information from sensors. The video of our study analyzed four combinations of input

signals from the inertial sensors. The results told us that the more constraints used, the smaller the

reconstruction errors. It is not surprising that when the total information from all sensors was used, the

reconstruction errors were the smallest.

• Testing on different databases. Table 2 gives the average reconstruction errors of five different

actions from four algorithms for two different training databases. One database has 65,609 poses based

on five captured motion sequences, and the other has 1.1 M poses downloaded from the CMU database.

The reconstruction errors were calculated using both 3D orientation and position constraints from six

inertial sensors. We found that when the size of the training database was increased, the reconstruction

error reduced. By testing on different databases, we also verified the benefits of the proposed model.

8 Conclusion

In this study, a new local model was introduced for real-time control of a virtual person using only

six initial sensors. The proposed method, which was based on a data-driven approach, was to use

several nearest motion examples to construct sequential online local regression models for online motion

synthesis. There was one limitation for the proposed method, which was that the motion data needed to

be previously prepared for online search. However, the proposed model demonstrated better performance

over previous models, and our performance interface which used only six sensors was much cheaper and

less intrusive for full-body avatar control.
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